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Abstract 

A direct-methods procedure has been proposed for 
separating the phase doublet resulting from the use 
of either isomorphous replacement or anomalous 
scattering techniques. The phase doublet is expressed 
as ~#u= ~h±lA~.l. Formulae combining the struc- 
ture-factor relationships with the phase-doublet 
information are given. Problems concerning the prac- 
tical applications are also discussed. A test calculation 
with the error-free data for the protein insulin showed 
a satisfactory result. 

Introduction 

The idea of combining direct methods with isomor- 
phous replacement or anomalous scattering data was 
first introduced in the 1960s by several authors 
independently. Coulter (1965) suggested the use of 
the tangent formula with starting phases extracted 
from the single isomorphous replacement data. This 
method does not make full use of the information 
which could be obtained from a single isomorphous 
pair. Fan (1965a) and Karle (1966) suggested the use 
of 'component  relationships', i.e. the relationships 
among the real and imaginary components of the 
structure factors. If the arrangement of the heavy 
atoms is centrosymmetric then this makes the problem 
of breaking the phase ambiguities just that of finding 
the signs for the real or imaginary components of the 
structure factors by direct-method procedures. 
However, if the arrangement of heavy atoms is non- 
centrosymmetric then the component relation is not 
convenient to use. A phase-difference relation is given 
here together with the associated probability formula. 
This enables one to treat the problem of phase 
ambiguities arising from single isomorphous replace- 
ment (SIR), as well as that from one-wavelength 
anomalous scattering (OAS), by a simple and unified 
manner, no matter what the arrangement of the heavy 
atoms is. Recently, Hauptman (1982a, b) integrated 
the probabilistic theory of the three-phase structure 
invariants with the techniques of isomorphous 
replacement and anomalous scattering leading to a 
series of complex formulae. Our method differs from 

* Part of this paper was presented at the IUCr Summer School 
on Crystallographic Computing, Kyoto, Japan, 1983. 

Hauptman's  in that, instead of two sets of diffraction 
data, e.g. one for the native protein and one for the 
derivative in the SIR case, only one set of diffraction 
data but with the phase-doublet information are intro- 
duced into the probability formula. 

Enantiomorphous phase doublets from isomorphous 
replacement or anomalous scattering 

In the case of SIR (see Blundell & Johnson, 1976, for 
details), for a given reciprocal vector H, we have 

FH.p = FH.~-- FH.Q, (1) 

where FH,p is the structure factor of the native protein, 
FH,po is that of the heavy-atom derivative and FH,Q 
the heavy-atom contribution to FH,pO. From experi- 
ment the magnitudes of FH,p and FH,PO can be 
obtained. Accordingly, the parameters of the heavy 
atoms can be found and FH,O be calculated. Hence, 
we have two ways for drawing the triangle of (1) 
leading to an enantiomorphous phase doublet for 
FH, v or for FH,pQ in the phase-vector diagram, as 
shown in Fig. 1. The phase doublets are of the form 

~.= ~h±lA~.l, (2) 

where ~H is the phase of the structure factor FH for 
the native protein or for the heavy-atom derivative, 

o a 

Fig. 1. Phase-vector diagram showing the enantiomorphous phase 
doublet arising from the SIR method. 
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eh  equals the phase of Fn,o and A~H is the difference 
between ell and eh .  

In the case of OAS (see Blundell & Johnson, 1976), 
we have 

and 

+ 
F H . P O  FH,PQ + " = FH,Q (3) 

FH*pQ = Fil,p Q - F~,Q. (4 )  

Here Fn,eo is the contribution of both the normal 
scattering and the real part of the anomalous scatter- 
ing, F~,o is the contribution of the imaginary part of 
the anomalous scattering, Fil,eo denotes the conju- 
gate of F~,r~. Subtracting (4) and (3), it follows that 

+ - ,  vv 
Fn,eo - Fil,Po = 2Fil,O. (5 )  

+ -:~ 
The magnitudes of FH.p o and FH.pO can be obtained 
from experiment, while F'~,o can then be derived. 
Hence we also have two ways for drawing the triangle 
of (5) leading to an enantiomorphous phase doublet 
for FH,pO, as shown in Fig. 2, having the same form 
of (2), but this time 

! 
~ H  = ~ H , Q  .dr O.), 

where ~l~ii,Q is the phase of FH, Q without the imaginary 
part of anomalous correction, to is the phase differ- 
ence between F~,o and Fil,o, which equals 7r/2 if all 
the anomalous-scattering atoms are of the same kind. 
In addition to the above two cases, it is interesting 
to notice that real-space enantiomorphous 
ambiguities in an electron density map or an E map, 
resulting from the determination of various kinds of 
small structures, also cause the enantiomorphous 
phase doublets. They all have the same form as (2) 
but with ~ h = 2 7 r H . r o ,  where ro is the positional 
vector of the pseudo inverse centre relating the true 
structure and its enantiomorph in real space. 

To summarize, the problem of splitting any kind 
of enantiomorphous phase doublets can be converted 

. q o /  / /  , '~*'/ / / J 

_ _ ~  ~ . o  

% 

Fig. 2. Phase-vector diagram showing the enantiomorphous phase 
doublet arising from the OAS method. 

into that of finding the signs for A~pH by making use 
' and IA~HI Alternatively, of the known values of ell 

defining 

Ah = [Fill cos A~H and Bh--IFHI sin A~H, 

the problem becomes that of finding the signs for Bh 
from the known values of Ah and I Bhl. 

T h e  phase -d i f f erence  re lat ion  

We start from a modified Sayre equation (Fan Hai-fu, 
1965b, 1975): 

Ou,p~-, " - 1 ) F n q  , (6) Fn = V ~,FwFn-n,-~q ( Onp 
OH,q 

where 0 is an atomic form factor, the subscripts p 
and q denote the light and the heavy atoms, respec- 
tively. Replacing Fn by IF.I exp (ieu) and replacing 
~n by ~ h + A ~ . ,  (6) becomes 

0 n  p 
IFHI exp (iAeH) =- - -~  ~-~, [FH'Fa-H'I 

H' 

× exp [ i ( - ¢ h  + ~h' + e h - a '  + A¢. ,  + A~H_H,)] 

\OH,q--l)lFa,qleXp[i(~PH.q--~ph)]. (7) 

Taking the imaginary part of (7) and denoting - ¢ h  + 
~h ,+  ' by ' have ~t~ H - H '  (J~3, we 

I F.I sin AeH 

= V IF., FH-H'I sin ( ~ ;  + A~H, + A ~ . _ . , )  

- ~q (k On,qO"'p - l ) I F" q l sin ( ¢H'q - (8) 

o r  

H' H - w -  BH, BH-w) sin t~) 3 
l '  

+ 2 ~ A'w B'n-n, cos @; ] 
!-!' 

--~q (OH'P--I )  (9) 

Equation (8) is the so-called phase-difference relation, 
while (9) may be regarded as a modified component 
relation. In the case of SIR with a centrosymmetric 
heavy-atom arrangement, (9) reduces to one of the 
original component relations (Fan Hai-fu, 1965a) 

H' Oil,q 
(10) 

while in the case of OAS with a centrosymmetric 
heavy-atom arrangement, (9) reduces to the other 
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original component relation 

AH = ( Orl,p/ V) ~ ( AH, AH-H, - BrrBH-H') 
H' 

, l l ,  

Here AH and BH are the "real and imaginary com- 
ponents of the structure factor, respectively. 

With (8) or (9) it is possible to derive the signs of 
A~OH or B~ by a routine direct-method procedure, 
provided la~.l or Ah and IBhl are known a priori. 
In other words, (8) or (9) may in principle be used 
to break any kind of enantiomorphous phase doublets 
occurring in single-crystal structure analysis. 
Moreover, (8) may also be used to refine the values 
of [A~0.[ once a trial set of their signs, mostly correct, 
is known. This is important since the values of I~.1 
from either isomorphous replacement or anomalous 
scattering includelarge errors. 

If the normalized structure factors EH are to be 
used instead of FH, we have instead of (8) and (9) 
the following equations: 

I E.I sin AtpH-- ZpV 

xsin (@~ +ACH, + ACH_H,)J 

--1 

- ~  ( ~ -  I )  IEII.+I sin (+n.+ -- tPH) 

(12) 

fill-- ZpV (aH'aH-H'--ClH'ClH-H')sin 4~ 

+ 2 Y '  ,~ . ,~ ._ . ,  COS 45;] 
H '  

- ~ (~qpq- 1) I EH,q] sin (~0H.q -- q~). (13) 

Here 

4 .  = IE.I cos a~0., /3. = IE.I sin A~oH. 

Incorporating phase-doublet information into the 
probability formula of triplet structure invariants 

According to Cochran (1955), for a triplet structure 
invariant, ~H -- ~n'-- (PH-H', the conditional probabil- 
ity distribution of ~o H given I E.I, I EH'I, I EH-H'], ~H' 
and eH-H' is as follows: 

P(q~H) = [2"rrlo(Kn,n')] -t 

xexp [KH,., COS (tpH-- ~p.,-- ~0._.,)], (14) 

where KH,H' = 2Or3Or23/21EH EH' EH-H'[, or,, = Xj~m Z~, 
N is the number of atoms in the unit cell, I0(KH.H') 

is the modified Bessel function of the first kind with 
KH,H' as argument. If for a given H there are simul- 
taneously t phase indications, the distribution 
becomes 

[i ] P(~0H) = M exp KH,., COS ( ~ .  -- ~H'-  ~'H-"') , 

(15) 

where M is a normalizing factor. Replacing ¢ by 
¢ ' +  A¢ in (15), we can obtain the conditional proba- 
bility for A~.  to have a positive or negative sign, 
when IA¢H[, A~o.,, A~H-H' , ( ~ h ,  ~ 0 h '  and ¢h-n '  are 
fixed. The result is* 

P±(A~OH) =-12 -1-/tanh [2or3 +3/21E.I sin l,a~.l 

t 

x x IEH, EH_.,I sin (q0~ + A¢.,  
I 

+ A+H_H, ) J (16) 

" 1  

or identically 

P±(flH) = ½++ tanh { 2or+or~+/21~.l 
t 

x ~  [(aH'aH--H'--BH'/3H--H') sin gS~ 
1 

+(~H,/3.- . ,  + ~H'~H-H') COS a~;]}. 
# ,  

(17) 

When dealing with structures having centrosymmetric 
heavy-atom arrangements, (17) reduces to either of 
the two probability formulae given by Karle (1966) 
according to whether SIR or OAS data are used. On 
the other hand, while the Karle formulae are not 
applicable to structures having non-centrosymmetric 
heavy-atom arrangements, (16) or (17) is very efficient 
for resolving phase ambiguities in this case. 

Practical application 

1. Derivation of  initial sign of  Aq~u 

According to (16), signs of A~H can be determined 
through the signs of Aq~., and Aq~n_n,. In dealing 
with macromolecular structures, a large starting set 
is essential. This may be achieved by a random 
approach such as Y Z A R C  (Declercq, Germain & 
Woolfson, 1979) or R A N T A N  (Yao Jia-xing, 1981). 
However, it would be preferable to have some way 
of deriving more reliable initial signs for A~H without 
knowing the signs of Aq~., and Aq~._.,. Consider the 
averaged value of sin (~+A~H'+A~H-H ' )  over the 

* See Appendix. 



492 COMBININO DIRECT METHODB WITtt  IBOMORPttOUB REPLACEMENT, | 

four possible sign combinations of Aq~ H, and &On_.,, 

(sin (qb; + Acp H, + Aq~H_H,))S,,S 2 

+1 +1 

= ~ Y~ Y~ sin (q~; + A~H' + Aq~n-n') 
S t = - - I  S 2 = - I  

= sin qL~ cos zaq~n, cos A~on_a,, 

where S~ and Sz are the signs of A~OH, and A~OH_H, 
respectively. If the averaged value, sin q~ cos A~on, 
cos dq~a-a,, is positive, the actual sign of sin (q~ + 
Aq~H, + Aq~n_n,) is more likely to be +1 than -1 .  The 
converse is also true. Hence, it is reasonable to expect 
that sin (qb 3 + Aq~ H, + A~oH_.,) will have the same sign 
as sin q~3cosAq~n, cosA~H_H, , at least when the 
absolute value of sin q~3 cos Aq~n, cos Aq~a_ H, is 
large. So we can replace sin(q~+Aq~n,+A~pn_., ) 
by 

Q sin qb 3 cos Aq~H, c o s  AqgH_H,  . 

Here Q is a scaling factor. Equation (16) then becomes 

P+(A~pH) ~ ½+½ tanh [2Qo'3o'~-3/2IEHI sin IA~.I 

xy~ IEn, EH_wl sin qS~ cos za~H, cos A~0n_w]. (18) 
H'  

Equation (18) with Q =  1 can be derived more 
rigorously by making use of the concept of 'best phase 
relationship' (Fan Hai-fu, Han Fu-son & Qian Jin-zi, 
1984). 

The application of (18) to the SIR case may be 
considered as a reciprocal-space equivalent to the 
method of Ramachandran & Raman (1959) or Blow 
& Rossmann (1961). They used a special Fourier 
synthesis with SIR data to reveal the true structure. 
Wang (1981) showed that electron density modifica- 
tion by iterative Fourier and inverse Fourier calcula- 
tions using SIR data can break the phase ambiguities 
and perform the phase refinement. This can be simu- 
lated in reciprocal space by using (12) with starting 
signs derived from (18). On the other hand, the appli- 
cation of (18) to the OAS case is similar to the 
'resolved anomalous scattering method' of 
Hendrickson & Teeter (1981). However, this latter 
method separates a given phase doublet by the heavy- 
atom phase corresponding to only one reflection with 
the same index, while (18) uses a large number of 
heavy-atom phases with indices ranging over the 
whole reciprocal space within the resolution limit. It 
should be noticed that, in the case of SIR with a 
centrosymmetric heavy-atom arrangement, (18) can- 
not be used since sin q~ will then always be zero. 
However, in this case (16) can give a large number 
of sign relationships between two Aq~H's. This will be 
discussed in detail later. 

2. Convergence mapping 

In the usual convergence process (Germain et al., 
1970), the controlling factor is Kn,H, = 

2tr3 o'2 -3/2 EH EH, En-n', which is a measure of strength 
of a single phase indication. In the absence of phase 
information, the corresponding measure of strength 
for a multiple phase indication is (a~) 1/2, where 

2 
= K H ,  H, 

H '  

II(KH,.') I, (KH,H") 
+ 2 Y'~H' y'H" Kn,, ,  Ka,,,, I0( KH, n') I0(Kn,n,,)" 

H ' #  H" 

When a direct method is used to resolve enantiomor- 
phous phase ambiguities, partial phase information 
is available. In this case only the strong 'phase-differ- 
ence relationships' are of importance. However, a 
strong Y,2 relationship is not necessarily a strong 
phase-difference relationship. Hence, we need a new 
controlling factor for the convergence process. In 
view of (16) the measure of strength may be 

K '..w = K . , . ,  sin ]ACH ] Isin (~'; + a ¢ . ,  + za~,.-H,)l 
(19) 

for a single indication and 

a h = [ ~ . ,  K.,H, sin (]A~oHl) sin ( ~'a + Aq~., + A~p._.,)[ 

(20) 

for a multiple indication. K~,w and a~ are propor- 
tional to the probability that the indication will be 
true. In the absence of the information about the signs 
of A~on, and A~CH_ H, we can replace Isin (q0~ + Aq~n,+ 

-11/2 Aq~H-W)l by [(sin 2 ( qb' 3 + Aq~, + Aq~n_,,))s, ,s2J where 
( )s,,s2 is the average over the four possible sign com- 
binations of Aq~ H, and A~ou_n,. This is equal to 

(½-½ cos 2qb~ cos 2Aq~,, cos 2Aq~H_H,)l/2 

So we have 

t 1 (Kn-n')¢s, = KH.H, sin (IAq~HI)(½-- ~ COS 2qL~ 

x cos 2A~, H, cos 2Aq~H_H,)I/2 

for a single indication and 

(21) 

(ah)es, = E (K h..,)¢s, (22) 
t t '  

for a multiple indication. These should be used 
instead of KH,H' and (all)e,, in the convergence 
mapping. 

3. Two-sign relationships 

As mentioned above, in the case of SIR with a 
centrosymmetric heavy-atom arrangement, (18) can- 
not help in deriving the initial signs of A~tt's. In this 
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case, since sin ~ = 0, (16) becomes 

-3/2 P±(AyH)=½+½tanh 20"30"2 IgHIsinlA~HI 

× Y~ lEa' EH-H'l COS q~ 
H' 

x sin (AyH, + AyH-H')J • (23) 

If, in addition, either A~H, is close to +7r/2 or Aq~H-H' 
is close to 0 or rr then (23) may reduce further to give 

P±(ACpH ) = ½ + ½ tanh [ 20-30";3/21EH1 sin I A~0HI 

1 

× ~ lEa' Ea-H'l COS qb~ 
H' 

× cos AYH-H' sin AYE'] • (24) 

If the summation over H' in the above equation 
includes only those terms which are symmetrically 
related to H', then (24) gives the probability that AyE 
has sign the same as or opposite to AyH,, without the 
necessity of knowing any of the signs of AyH_H,. A 
modified convergence procedure controlled by 

Ig~..,I--IKH.H ' sin IAYHI COS c/,~ 

×COS A y H _  . ,  sin IAya,ll 

and 

I I O~H ~ " : K H ,  H, 
H' 

can be used to find out systematically the strongest 
two-sign relationships. After that, by giving a positive 
or negative sign to a AyH at the bottom of the conver- 
gence map, which is equivalent to fixing the enan- 
tiomorph, the phase ambiguities can be resolved 
easily. If, however, the indications at the bottom of 
the convergence map are not strong enough or 
whenever a weak link exists, then a multiple starting 
set of signs must be used and the phase ambiguities 
resolved by a MULTAN-Iike procedure. 

The procedure suggested in this section may also 
be used in resolving enantiomorphous ambiguities 
arising from the determination of various kinds of 
small structures. 

4. Weighting schemes and figures of merit 

All the weighting functions and figures of merit 
used in MULTAN80 (Main et al., 1980) can also 
work here with the corresponding aa,(aH)es, and 
(an)rand given as follows: 

! 
O ~ H =  CIf H 

( a H ) e s t  = ( ~  h)est 

(OfH)rand  = 0 ,  

Table 1. The correlation between the calculated proba- 
bility and the percentage of reflections with the signs of 

Aq~H correctly determined 

P: I P+ - ~l + ½ ; Ngr: Number of reflections in the group; % : Percen- 
tage of reflections with signs correctly determined. 

Results from Results f rom 
(16) (18) 

P x 100 Ngr % Ngr % 

98-100 426 98.8 57 100.0 
92-98 128 94.6 83 94-0 
85-95 151 91.4 138 89.9 
70-90 192 81.2 297 78.8 
60-80 ! 76 65.3 356 65.5 
50-70 253 61.7 533 52.2 

' and ' given by (20) and (22), where aH (an)es, are 
respectively. In addition, it would be better to replace 
the EH values by /38 = I Enl sin AyH in the gro and 
R(Karle) figures of merit. 

Test of the probability formulae 

Formulae (16) and (18) have been tested with the 
error-free SIR data from the protein insulin, 
molecular weight - 1 2  000, and its Pb derivative. 
Crystals of insulin belong to space group R3 with 
unit-cell parameters a = 82.5, c = 34.0, y = 120 ° and 
Z = 9 .  The data were calculated from the known 
atomic parameters. There are 6371 independent 
reflections within resolution limit of 1.9 A,. In the test 
calculation, 1000 largest E 's  of the native protein 
together with the corresponding Ay n were selected 
and 60 000 of the total 75 568 Y~2 relationships were 
involved. The results are summarized in Tables 1 and 
2. In Table 1 the reflections are grouped according 
to the calculated probability. As can be seen the 
calculated probabilities, P, from either (16) or (18) 
are in good agreement with the percentages of reflec- 
tions having signs of Ayu correctly determined by 
the corresponding probability formula. This means 
that the probabilities calculated from either (16) or 
(18) are reliable quantitatively. In Table 2 the reflec- 
tions are cumulated in 20 groups. It shows that, with 
(18), it is possible to obtain a very large starting set 
of good quality without any preliminary knowledge 
of the sign of AyH. Furthermore, such a starting set 
can in turn be improved considerably by making use 
of (16). 

Tests with experimental data of known protein 
structures are now in progress. The results will be 
published in due course. 

The authors are grateful to Drs G. Dodson and 
E. Dodson for the use of their insulin data and to 
Professor M. M. Woolfson for his helpful comments 
and for kindly correcting the manuscript. 
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Table 2. Errors in the estimation of signs of AcH with respect to the cumulative probabilities 

I" Results from (18) using E n and lanai as input; II: Results from (16) using the results from (18) as input;* IIl: Results from (16) 
calculated with the signs of  A~ n derived from the known structure; Gnr: Group number; Ngr: Number of reflections in the group; P: 
Minimum value of  IP+-½1 +½ in the group; Nwr: Number of reflections with wrong signs; ER: Averaged error of phases in degrees. 

I II III 

Gnr N g r  P x 100 N w r  ER(°)  P x 100 N w r  ER(°)  P x 100 Nwr ER(°) 

I 50 98"3 0 0 100"0 0 0 100-0 0 0 
2 100 95"2 2 2 99.7 2 2 100.0 0 0 
3 150 91"4 5 4 99"2 3 2 100.0 0 0 
4 200 88"2 11 7 98"3 5 2 99"9 0 0 
5 250 84"4 17 7 97"0 10 4 99"8 i 0 
6 300 80"9 32 12 95.5 12 4 99"6 I 0 
7 350 77"4 44 14 92-7 19 5 99" 1 2 0 
8 400 74"6 55 15 89"7 27 7 98'2 5 1 
9 450 71"0 65 16 85"9 35 8 96"7 7 I 

I 0 500 67"6 80 17 82" 5 49 10 94"0 I 0 2 
1 i 550 65"3 92 18 78-5 63 I 1 90"6 15 2 
12 600 63"2 116 20 74-8 84 13 87.2 19 3 
13 650 60.7 146 22 70"0 102 15 82-0 24 3 
14 700 58.4 174 23 66" 2 123 16 75 "6 37 4 
15 750 56"5 197 23 62"8 149 16 69"3 54 5 
16 800 55'3 220 24 59.4 173 17 65-2 71 6 
17 850 53"7 247 24 57-3 192 17 59-7 89 6 
18 900 52"2 268 24 54-5 216 18 55"4 106 7 
19 950 51-0 294 24 52"0 243 18 52" 5 126 7 
20 998 50"0 324 25 50"0 262 18 50"0 150 7 

* See Fan Hai-fu e t  al. (1984) for further details. 

A P P E N D I X  

While (16) comes from Cochran's distribution (14), 
the a priori knowledge  of  EH,O can lead to a distribu- 
tion different from (14). Taking this into account we 
can use instead of  (14) a combined distribution which 
is the product of  (14) and the distribution of  Sim 
(1959). This results in 

p(A¢s)=[2rtlo(a)]-' e x p [ a  cos (ACH -- /3)] (14') 

with 

Ot = K H H ,  COS ( ~ 3  + A~t) H, + A~/)H_H, ) + X COS to 

+ KaH, sin (4~; + Zkoa, + Z~H-H')-- X sin to 

and 

tan/3 : 

Knw sin (@~ + zaCn, + Za¢n-s,) - x sin to 
H' 

where 

K H H ,  COS ( t ~  + A ~ H ,  ÷ A~t~H_H, ) ÷ X  COS to 
H' 

2 
x = 2 I E H E H . Q [ / 0 .  p ,  

N 

0.1) ~ 
p = !  

p denotes the atoms of  unknown positions,  

to----0, 

except for the OAS case. By maximizing (14') we have 

tan  ( A ~ H )  = [~, IEa, EH_H,I sin (~ + A~t) H, 

÷ A ~ H _ H ,  ) 0 .3  1 3/2 - 2  ] - 0.2 0., IEH.ol sin to 

x [ E  I E . , f . - . , I  cos (,t,; + a~ . ,  

]-' 
+ A ~ . _ . , )  ÷ 0.;'0.~/=0.;=lE.,Qlcos to (15') 

We can also obtain from (14') that 

i i { 
P+(~PH) = ~ +~ tanh ~ 20.30.~3/2[EH sin ~I~HI 

× E IEH, EH-H,I sin (q~  + Za~a, + Za~H-H') 
H' 

-0.;=lE.,ol sin to} .  (16') 

In the SIR case, since to = 0, (16') is the same as (16). 
In the OAS case, as far as macromolecular  structures 
are concerned,  the term 0.;21E..o I sin to will be com- 
paratively small and there will be little difference 
between (16) and (16'). On the other hand, when we 
are trying to derive a complete  structure from its 
known part, (15') and (16') will then be very helpful.  
This will be discussed in detail in a forthcoming paper. 
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Abstract 
The error treatment given by Blow & Crick [Acta 
Cryst. (1959). 12, 794-802] in the isomorphous 
replacement method can be readily introduced into 
direct methods when they are used to handle the 
single isomorphous replacement (SIR) or the one- 
wavelength anomalous scattering (OAS) data. The 
'best phase relationship' is defined similarly to the 
'best Fourier'. Expressions of the 'best phase' and the 
'figure of merit' for individual reflection have been 
derived for the SIR or OAS case. These enable initial 
signs to be obtained for a set of ACn without knowing 
the sign of any one ACH in advance. Finally, a weight- 
ing scheme is proposed for the refinement of signs 
and magnitudes of Aq9 H. 

The best phase relationship 
Following Blow & Crick (1959), we consider the error 
in a single triplet relationship arising from the error 
of only one reflection (say EH,). We write 

/ tEn=  K ' ( E ~ , -  E~,)EH_H,, (1) 

where K '  is a constant, E~, is the value of EH, 
employed in the calculation and Eh, is the true value 
of EH,. From (1), 

AE 2 K,21 2 , = En-n,I IEs,-Eh,]  2 -- KIE~ , -  En't' 2, (2) 
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where K is also a constant. Now a best phase relation- 
ship is defined as that which leads to a minimum 
value of AE 2. In practice, E~, can only be expressed 
in the form of a probability distribution. Accordingly, 

AE 2= K J IE~,-En,[2p(E.,) dEn,. (3) 

Let O(AE2)/OE~,=O, then 

Eh ,= J EH'P(EH') dEn, = EH'best- (4) 

EH' can be expressed by EH, exp (iaH,), where EH, can 
be derived from the experimental data. Since the error 
to be considered in EH, is the phase error, (4) can be 
written as 

t" 

EH'best = EH' [ exp (iOlH,)P(aH') dan,. (5) 
a /  

Let 

mH, = ran, exp (iaH'best) = [ exp (ian,)P(an,) dan,, 

(6) 

(5) becomes 

En,b~st = mH'EH' exp (ian,b~st). (7) 

Here an,best and ran, are known as the best phase and 
the figure of merit in protein crystallography. They 
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